Прочностные характеристики бетона

Под прочностью твердого тела понимают его способность сопротивляться воздействию внешних сил, не разрушаясь. Прочность бетона зависит от многочисленных факторов: структуры, марки и вида цемента, водоцементного отношения, вида и прочности крупных и мелких заполнителей, условий твердения, вида напряженного состояния, формы и размера образцов, длительности загружения. Определяющее влияние на прочность бетона оказывает взаимодействие твердой кристаллической части цементного камня с его пластичной гелевой частью. Во времени гелевая составляющая уменьшается, а кристаллическая — увеличивается. Соотношение во времени между двумя составляющими цементного камня в основном зависит от марки цемента и тонкости помола. Чем тоньше помол цемента, тем быстрее рост твердой кристаллической части.

В нашей стране в основном производится алитовый портландцемент. После твердения он обладает наибольшим отношением твердой кристаллической к пластичной гелевой составляющей цементного камня. Вследствие этого алитовый портландцемент оказывается наиболее прочным. При одноосном сжатии растягивающие напряжения в сплошной среде отсутствуют, хотя вокруг пор и пустот по продольным площадкам возникают растягивающие структурные напряжения, уравновешиваемые сжимающими напряжениями. Поэтому местные структурные напряжения в явном виде не учитывают, полагая, что влияние их сказывается при определении нормативных прочностных и деформативпых характеристик бетона.

Вследствие частого и хаотического расположения пустот происходит взаимное наложение растягивающих напряжений (появляется вторичное поле напряжений). Концентрация местных растягивающих напряжений приводит к появлению и развитию микротрещин в бетоне еще задолго до его разрушения. В случае одноосного сжатия небольшое количество микротрещин возникает уже при напряжениях (временное сопротивление сжатию призмы). Отсутствие закономерности в расположении заполнителей в затвердевшем бетоне, а также в размерах и расположении пор приводит к существенному разбросу показателей прочности эталонных образцов, изготовленных из одного бетона. Поэтому данные о фактической прочности и деформативности бетона основывают на большом числе экспериментов, выполненных в лабораторных и натурных условиях.

На прочность бетона большое влияние оказывает скорость нагружения образцов. При замедленном их нагружении прочность бетона оказывается на 10…15% меньше, чем при кратковременном. При быстром нагружении (0,2 с и менее) прочность бетона возрастает до 20%. Бетон имеет различную прочность при разных силовых воздействиях: сжатии, растяжении, изгибе, срезе. В связи с этим различают несколько характеристик прочности бетона: кубиковую и призменную прочность, прочность при срезе и скалывании, при многократно повторных нагрузках, при кратковременном, длительном и динамическом действии нагрузок.

Кубиковая прочность.
В железобетонных конструкциях бетон преимущественно используется для восприятия сжимающих напряжений. Поэтому за основную характеристику (эталон) прочностных и деформативных свойств бетона принята его прочность на осевое сжатие. Все другие прочностные характеристики (на растяжение, местное сжатие и др.) и модуль деформаций зависят от прочности бетона на осевое сжатие и определяются по эмпирическим формулам с помощью экспериментальных коэффициентов.

Наиболее простым и надежным способом оценки прочности бетона в реальных конструкциях является раздавливание на прессе кубов бетона, изготовленных в тех же условиях, что и реальные конструкции. За стандартные лабораторные образцы принимают кубы размером 15 х 15 х 15 см; испытывают их при температуре (20 + 2) °С через 28 дн твердения в нормальных условиях (температуре воздуха 15…20°С и относительной влажности 90—100%). Временное сопротивление эталонных кубов принимают за кубиковую прочность бетона. В настоящее время широкое распространение получают экономичные неразрушающие методы оценки прочности бетона в реальных конструкциях и изделиях: ультразвуковые, просвечивание проникающими лучами.

На величину лабораторно оцениваемой прочности бетона существенно влияет форма и размеры образцов: например, чем меньше куб, тем она больше. Так, временное сопротивление сжатию бетонных кубов со стороной 10 см на 10% выше, чем прочность эталонных кубов, а прочность куба со стороной в 30 см ниже на 11…13%. Различное временное сопротивление сжатию образцов разной формы объясняется влиянием сил трения, возникающих между гранями образца и опорными плитами пресса, неоднородностью структуры бетона. Вблизи опорных плит пресса силы трения, направленные внутрь образца, создают как бы обойму и тем самым увеличивают прочность образцов при сжатии. Удерживающее влияние сил трения по мере удаления от торцов снижается, поэтому бетонный куб при разрушении получает форму двух усеченных пирамид, обращенных друг к другу вершинами. При уменьшении сил трения посредством смазки (парафин, стеарин) характер разрушения меняется: вместо выкалывания с боков образца пирамид происходит раскалывание его по трещинам, параллельным направлению действия усилия. При этом временное сопротивление бетона сжатию уменьшается. Физическую сущность масштабного эффекта раскрывает статистическая теория прочности хрупких материалов.

В общем случае прочность бетона при осевом сжатии имеет три характерные границы. Первой границей является величина прочности бетона на многократно повторную нагрузку (предел выносливости бетона), второй — предел длительного сопротивления бетона, и третий — кратковременное сопротивление бетона или призменная прочность бетона.

Призменная прочность.
Под призменной прочностью понимают временное сопротивление осевому сжатию призмы с отношением высоты призмы h к размеру стороны Ь квадрата, равном 4. Образцы призматической формы, для которых влияние сил трения меньше, чем для кубов, при одинаковом поперечном сечении показывают меньшую прочность на сжатие. При отношении высоты призмы h к стороне b > 3…4 прочность призм на сжатие остается практически постоянной. В реальных конструкциях напряженное состояние бетона приближается к напряженному состоянию призм. Поэтому для расчета конструкций на осевое сжатие принята призменная прочность бетона, ее величина имеет максимальное значение при мгновенном загружении. При таком соотношении h/b влияние опорных плит пресса в средней части призмы (участок разрушения), а также гибкости бетонного образца практически не сказывается. При этом имеется в виду, что эталонные призмы набирали прочность в нормальных условиях в течение 28 дней и что условия загружения соответствуют требованиям ГОСТа. Призменная прочность равняется примерно 0.75 кубиковой прочности для класса бетона В25 и выше и 0, 8 для класса бетона ниже В25.

Прочность на смятие (местное сжатие).
Опыты показывают, что при действии сжимающей силы напряжения в толщу бетона распространяются под углом 45 градусов. При этом бетон под площадкой смятия может выдерживать напряжения, значительно превышающие призменную прочность бетона. Повышение прочности бетона на нагруженной части объясняется удерживающим влиянием бетона ненагруженной части (бетонной обоймой) и в железобетонных конструкциях многоэтажных зданий встречается часто: под опорами балок, в стыках сборных колонн, под анкерами предварительно напряженных конструкций.

Прочность на осевое растяжение.
Из-за трудностей центровки растягивающей силы истинное временное сопротивление бетона на осевое растяжение получить трудно, поэтому на практике определяют его косвенными методами — по результатам испытания цилиндрических образцов на раскалывание или изгиба опытных балочек. Прочность бетона на осевое растяжение зависит от прочности на растяжение цементного камня и его сцепления с зернами крупного заполнителя, от увлажнения. Причинами низкой прочности при осевом растяжении является неоднородность структуры бетона, наличие внутренних напряжений, слабое или нарушенное сцепление между цементным камнем и заполнителями.

Прочность при срезе и скалывании.
Под чистым срезом понимают разделение элемента на части по сечению, к которому приложены перерезывающие силы, т. е. такое напряженное состояние, при котором главные напряжения равны 0. Под чистым скалыванием понимают взаимное смещение (сдвиг) частей элемента между собой под действием скалывающих (сдвигающих) усилий. Железобетонные конструкции редко работают на срез и скалывание. Обычно срез сопровождается действием продольных сил, а скалывание — действием поперечных сил. Сопротивление срезу может возникать в шпоночных соединениях и у опор балок, а сопротивление скалыванию — при изгибе преднапряженных балок до появления в них наклонных трещин, если не обеспечена надежная связь между верхней и нижней частями бетона на опорах.

Прочность при длительном действии нагрузки.
Пределом длительного сопротивления бетона называют наибольшие статические неизменные во времени напряжения, которые он может выдерживать неограниченно долгое время без разрушения. При длительном действии нагрузки бетонный образец разрушается при напряжениях меньших, чем при кратковременной нагрузке. Это обусловливается влиянием развивающихся значительных неупругих деформаций и изменением структуры бетона и зависит от режима нагружения, начальной прочности и возраста образцов.

Прочность при многократном действии нагрузки.
Под прочностью бетона при многократно повторных (подвижных или пульсирующих) нагрузках (предел выносливости бетона) понимают напряжение, при котором количество циклов, необходимых для разрушения образца, составляет не менее 1000000. Установлено, что предел выносливости бетона уменьшается с уменьшением коэффициента асимметрии цикла. Предел выносливости связан с нижней границей образования микротрещин. Если многократно повторная тающего упруго в течение короткого промежутка нагружения динамической нагрузкой.

Влияние времени и условий твердения на прочность.
При благоприятных условиях естественного твердения прочность бетона постепенно увеличивается. При этом, чем меньше тонкость помола цемента, тем выше скорость и меньше продолжительность роста прочности бетона. Наиболее интенсивно бетон набирает прочность в первые 28 сут, поэтому испытания бетона на прочность производят в 28-суточном возрасте. Если испытания осуществляют в более раннем возрасте, то их результаты приводят к 28-суточной прочности бетона. Длительное сопротивление материалов и их пределы выносливости в зависимости от режима нагружения, нелинейности деформирования, ползучести, возраста, начальной прочности могут быть рассчитаны по методике В. М. Бондаренко.

Динамическое упрочнение.
При кратковременной (ударная, импульсная) динамической нагрузке большой интенсивности получают увеличение временного сопротивления бетона — динамическое упрочнение. Оно тем больше, чем меньше время нагружения образца. Динамическое временное сопротивление
Бетоны высоких классов не дают заметного прироста прочности во времени. Твердение бетона значительно ускоряется с повышением температуры и влажности среды. Поэтому на предприятиях сборного железобетона изделия подвергают тепловлажностной обработке (температура до 90 С и влажность до 100%) или специальной автоклавной обработке при высоком давлении пара и температуре порядка 170 °С. Эти способы позволяют за сутки получить прочность бетона, равную 70% от проектной прочности.

При температурах ниже +5°С твердение бетонов существенно замедляется, а при температуре бетонной смеси — 10 °С — практически прекращается. За 28 сут твердения при — 5 °С бетон набирает не более 8% прочности бетона, твердевшего в нормальных условиях, при 0°С-40…50%, при +5°С-70…80%. После оттаивания бетонной смеси твердение бетона возобновляется, но конечная прочность его всегда оказывается ниже прочности бетона, твердевшего в нормальных условиях. Бетоны, прочность которых к моменту замерзания составляла не менее 60% от проектной, после оттаивания в течение 28 сут набирают проектную прочность. При бетонировании в условиях низких температур (до — 30 °С) охлажденную смесь перед укладкой посредством электропрогрева нагревают до температуры + 70°С. Применение быстротвердеюших цементов или утепление конструкций позволяет в этом случае набирать бетону в среднемассивных конструкциях (модуль поверхности до 10) до 70% прочности прежде, чем он замерзнет и тем самым исключить влияние замораживания бетона на рост его прочности после оттаивания.

Противоморозные добавки (хлористые соли, углекислый калий, азотистокислый натрий) обеспечивают твердение бетона при температурах до — 10 С. Добавку принимают не более 15% от массы цемента. Лишнее количество добавки вредно действует на бетон и вызывает коррозию арматуры.

Мой блог находят по следующим фразам
строим дом из камня
Требуется бригада каменьшиков для строительства в подмосковье
технология строительства дома из природного камня
холодный шов сколько времени интервал
Прочностные характеристики бетона
некачественный рабочих шов бетонирования